RBF neural network-based admittance PD control for knee rehabilitation robot

Author:

Almaghout Karam,Tarvirdizadeh BahramORCID,Alipour KhalilORCID,Hadi AlirezaORCID

Abstract

AbstractEarly-stage rehabilitation therapy for post-stroke patients consists of intensive and accurate training sessions. During these sessions, the therapist moves the patient’s joint within its range of motion repetitively. Patients, at this stage, often cannot control their muscles, and neurological disorders may occur and lead to undesirable movements. Thus, the therapist should train the joint gently to handle any sudden involuntary movements. Otherwise, the joint may undergo excessive torques, which may injure it. In this paper, we address this case and develop a clinical rehabilitation robotic system for training the knee joint taking into account the occurrence of these undesirable movements. The developed system has an innovative mechanism to measure interaction torques exerted by involuntary movements. Then, we introduce a new control approach consisting of an admittance controller and a proportional-derivative controller augmented by a radial basis function (PD-RBF) neural network. The PD-RBF guides the robot joint along a predefined trajectory, while the admittance part tracks any sudden interaction torques and updates the predefined trajectory accordingly. Thus, the robot trains the knee joint and once an undesirable movement occurs the robot gets along with this movement smoothly, then it gets back to the predefined trajectory. To validate the performance of the proposed admittance PD-RBF controller, we consider two controllers, an admittance adaptive sliding mode control and an admittance conventional PD one. Then, a compatarive study is conducted on these controllers via real-world experiments. The obtained results verify the efficiency of the admittance PD-RBF and prove its superiority over the other aforementioned controllers.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synergetic gait prediction and compliant control of SEA-driven knee exoskeleton for gait rehabilitation;Frontiers in Bioengineering and Biotechnology;2024-01-26

2. Trajectory tracking control of lower limb exoskeleton rehabilitation robot based on extended state observer;2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA);2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3