Parameter self-adaptation in biped navigation employing nonuniform randomized footstep planner

Author:

Xia Zeyang,Xiong Jing,Chen Ken

Abstract

SUMMARYIn our previous work, a random-sampling-based footstep planner has been proposed for global biped navigation. Goal-probability threshold (GPT) is the key parameter that controls the convergence rate of the goal-biased nonuniform sampling in the planner. In this paper, an approach to optimized GPT adaptation is explained by a benchmarking planning problem. We first construct a benchmarking model, in which the biped navigation problem is described in selected parameters, to study the relationship between these parameters and the optimized GPT. Then, a back-propagation (BP) neural network is employed to fit this relationship. With a trained BP neural network modular, the optimized GPT can be automatically generated according to the specifications of a planning problem. Compared with previous methods of manual and empirical tuning of GPT for individual planning problems, the proposed approach is self-adaptive. Numerical experiments verified the performance of the proposed approach and furthermore showed that planning with BP-generated GPTs is more stable. Besides the implementation in specific parameterized environments studied in this paper, we attempt to provide the frame of the proposed approach as a reference for footstep planning in other environments.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3