Abstract
AbstractAdmittance control of the robot is an important method to improve human–robot collaborative performance. However, it displays poor matching between admittance parameters and human–robot collaborative motion. This results in poor motion performance when the robot interacts with the changeable environment (human). Therefore, to improve the performance of human–robot collaboration, the human-like variable admittance parameter regulator (HVAPR) based on the change rate of interaction force is proposed by studying the human arm’s static and dynamic admittance parameters in human–human collaborative motion. HVAPR can generate admittance parameters matching with human collaborative motion. To test the performance of the proposed HVAPR, the human–robot collaborative motion experiment based on HVAPR is designed and compared with the variable admittance parameter regulator (VAPR). The satisfaction, recognition ratio, and recognition confidence of the two admittance parameter regulators are statistically analyzed via questionnaire. Simultaneously, the trajectory and interaction force of the robot are analyzed, and the performance of the human–robot collaborative motion is assessed and compared using the trajectory smoothness index and average energy index. The results show that HVAPR is superior to VAPR in human–robot collaborative satisfaction, robot trajectory smoothness, and average energy consumption.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献