Matching monocular lightweight features using N-gram techniques for topological location identification

Author:

Boal Jaime,Sánchez-Miralles Álvaro,Alvar Manuel

Abstract

SUMMARYIn SLAM (simultaneous localization and mapping), the topological paradigm provides a more natural and compact solution that scales better with the size of the environment. Computer vision has always been regarded as the ideal sensor technology for topological feature extraction and description and several methods have been proposed in the literature, but they are either time-consuming, require plenty of different sensors, or are very sensitive to perceptual aliasing, all of which limit their application scope.This paper presents a fast-to-compute collection of features extracted from monocular images, and an adaptive matching procedure for location identification in structured indoor environments inspired by the natural language processing field. Although only dominant vertical lines, color histograms, and a reduced number of keypoints are employed in this paper, the matching framework introduced allows for the incorporation of almost any other type of feature. The results of the experiments carried out in a home and an office environment suggest that the proposed method could be used for real-time topological scene recognition even if the environment changes moderately over time. Due to the combination of complementary features, high precision can be achieved within reasonable computation time by using weaker but faster descriptors.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference34 articles.

1. FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance

2. M. Horvath , “ShapeGrid macro—Isometricland”, (2008). http://isometricland.net/povray/povray.php; last accessed: Nov. 21, 2013.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3