Closed-loop control of bevel-tip needles based on path planning

Author:

Huo BenyanORCID,Zhao Xingang,Han Jianda,Xu Weiliang

Abstract

SUMMARYBevel-tip needles have the potential to improve paracentetic precision and decrease paracentetic traumas. In order to drive bevel-tip needles precisely with the constrains of path length and path dangerousness, we propose a closed-loop control method that only requires the position of the needle tip and can be easily applied in a clinical setting. The control method is based on the path planning method proposed in this paper. To establish the closed-loop control method, a kinematic model of bevel-tip needles is first presented, and the relationship between the puncture path and controlled variables is established. Second, we transform the path planning method into a multi-objective optimization problem, which takes the path error, path length and path dangerousness into account. Multi-objective particle swarm optimization is employed to solve the optimization problem. Then, a control method based on path planning is presented. The current needle tip attitude is essential to plan an insertion path. We analyze two methods to obtain the tip attitude and compare their effects using both simulations and experiments. In the end, simulations and experiments in phantom tissue are executed and analyzed, the results show that our methods have high accuracy and have the ability to deal with the model parameter uncertainty.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3