Author:
Asano Fumihiko,Luo Zhi-Wei
Abstract
SUMMARYWe investigated and identified the conditions necessary for stable dynamic gait generation in biped robots from the mechanical energy balance point of view. The equilibrium point at impact in a dynamic gait is uniquely determined by two conditions; keeping the restored mechanical energy constant and settling the relative hip-joint angle to the desired value before impact. The generated gait then becomes asymptotically stable around the equilibrium point determined by these conditions. This is shown by a simple recurrence formula of the kinetic energy immediately before impact. We verified this stability theorem using numerical simulation of virtual passive dynamic walking. The results were compared with those for a rimless wheel and an inherent stability principle was derived. Finally, we derived a robust control law using a reference mechanical energy trajectory and demonstrated its effectiveness numerically.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献