Recent Approaches on Classification and Feature Extraction of EEG Signal: A Review

Author:

Pooja ,Pahuja SK,Veer KaranORCID

Abstract

AbstractObjective:Electroencephalography (EEG) has an influential role in neuroscience and commercial applications. Most of the tools available for EEG signal analysis use machine learning to extract the required information. So, the study of robust techniques for feature extraction and classification is an important thing to understand the practical use of EEG. The paper aims that if there is any special tool for a particular task. Which feature domain or classifier has a significant role in EEG signal analysis?Approach:It presents a detailed report of the current trend for bio-electrical signals classification focusing on various classifiers’ advantages and disadvantages. This study includes literature from 2000 to 2021 with a brief description of EEG signal origin and advancement in classification techniques.Results:Randomly used classifiers for EEG signal can be categorized into five classes, namely Linear Classifiers, Nearest Neighbor Classifiers, Nonlinear Bayesian Classifiers, Neural Networks, and Combinations of Classifiers. Approximately 40% of studies use Support Vector Machine, Nearest Neighbor, and their combination with others. For specific tasks, particular classifiers are recommended in the survey. Features can be defined into four categories, namely TDFs, FDFs, TFDFs, and statistical features, where 39% of studies used TFDFs. Multi-domains features are preferred when the required information cannot be obtained from one domain.Significance:The paper summarizes the recent approaches for feature extraction and classification of EEG signals. It describes the brain waves with their classification, related behavior, and task with the physiological correlation. The comparative analysis of different classifiers, toolbox, the channel used, accuracy, and the number of subjects from various studies can help the practitioners choose a suitable classifier. Furthermore, future directions can cope up with the relevant problems and can lead to accurate classification.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference96 articles.

1. Feature extraction and classification of EEG signal for different brain control machine

2. Multivariate statistical data analysis-principal component analysis (PCA);Sarkar;Int. J. Livest. Res.,2017

3. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update

4. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains;Al-Fahoum;ISRN Neurosci.,2014

5. Detection of Human Falls on Furniture Using Scene Analysis Based on Deep Learning and Activity Characteristics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3