Author:
Khooban Mohammad Hassan,Alfi Alireza,Abadi Davood Nazari Maryam
Abstract
SUMMARYThis paper introduces an optimal interval type-2 fuzzy proportional–integral–derivative (PID) controller to achieve the best trajectory tracking for nonholonomic wheeled mobile robots (WMRs). In the core of the proposed method, a novel population-based optimization algorithm, called teaching–learning-based optimization (TLBO), is employed for evolving the parameters of the controller as well as the parameters of the input and output membership functions. Two PID controllers are designed for each of two wheels separately whereas each controller has two inputs and one output that are logically connected by nine rules. The controller can handle the problem of integrated kinematic and dynamic tracking in the presence of uncertainties. Simulation results demonstrate the superiority of the proposed control scheme.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献