Faster navigation of semi-structured forest environments using multirotor UAVs

Author:

Lin Tzu-JuiORCID,Stol Karl A.

Abstract

AbstractModern approaches for exploration path planning generally do not assume any structural information regarding the operational area. Therefore, they offer good performance when the region of interest is entirely unknown. However, for some applications such as plantation forest surveying, partial information regarding the survey area is known before the exploration process. Because the region of interest consists only of the lower portions of the tree stems themselves, the ground and high-elevation sections of the environment are unimportant and do not need to be observed. Due to these unconventional conditions, existing methods favoring faster survey speeds produce suboptimal surveys as they do not try and ensure even coverage across the entire exploration volume, while methods that favor reconstruction accuracy produce excessively long survey times. This work proposes a structured exploration approach specifically for plantation forests utilizing a lawnmowing pattern to maximize coverage while minimizing re-visited regions, guiding the unmanned aerial vehicle to visit all areas. Experiments are conducted in various environments, with comparisons made to state-of-the-art exploration planners regarding survey time and coverage. Results suggest that the proposed methods produce surveys with significantly more predictable coverage and survey times at the expense of a longer survey.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3