Swing-free transportation of suspended objects with robot manipulators

Author:

Alici Gürsel,Kapucu Sadettin,Bayseç Sedat

Abstract

This paper addresses the swing-free transport of simply suspended objects which cannot be grasped by robot manipulators, and therefore, must be carried by a hook or a similar device attached to the manipulator endpoint. Two methods are presented to stop the suspended object in a swing-free state at the end of a move/gross motion; (1) limiting transportation time, thus stopping the manipulator at the instant when the object completes one or more full cycle(s), and (2) adjusting traveling time of each section of a three-piece continuous trajectory provided that a given transportation time is unchanged. A hydraulically actuated robot manipulator carrying a compound pendulum was employed as an experimental system to test the methods. Simulation and experimental results are presented to demonstrate the feasibility of both methods. It is concluded that while limiting transportation time is not a preferred way to eliminate swing at the end of the move as it depends on the period of oscillation of the suspended object, the latter is a more practical and applicable method and is valid for moves of any length. The results reveal that by properly planning the acceleration of the transporting device, a robot manipulator or a similar device such as a crane, a swing-free stop is obtainable. The proposed approaches are simple and easy to implement.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Antiswing Control and Trajectory Planning for Offshore Cranes;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

2. Vision sensor based residual vibration suppression strategy of non-deformable object for robot-assisted assembly operation with gripper flexibility;Industrial Robot: the international journal of robotics research and application;2022-02-08

3. DARBE GENİŞLİK MODÜLASYONU İLE SÜRÜLEN SİSTEMLERE GİRDİ ŞEKİLLENDİRME TEKNİĞİNİN UYGULANABİLİRLİĞİ;Konya Journal of Engineering Sciences;2019-12-30

4. How the type of input function affects the dynamic response of conducting polymer actuators;Smart Materials and Structures;2014-09-09

5. A Novel Kinematic Coupling-Based Trajectory Planning Method for Overhead Cranes;IEEE/ASME Transactions on Mechatronics;2012-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3