Face salient points and eyes tracking for robust drowsiness detection

Author:

Jimenez-Pinto J.,Torres-Torriti M.

Abstract

SUMMARYMeasuring a driver's level of attention and drowsiness is fundamental to reducing the number of traffic accidents that often involve bus and truck drivers, who must work for long periods of time under monotonous road conditions. Determining a driver's state of alert in a noninvasive way can be achieved using computer vision techniques. However, two main difficulties must be solved in order to measure drowsiness in a robust way: first, detecting the driver's face location despite variations in pose or illumination; secondly, recognizing the driver's facial cues, such as blinks, yawns, and eyebrow rising. To overcome these challenges, our approach combines the well-known Viola–Jones face detector with the motion analysis of Shi–Tomasi salient features within the face. The location of the eyes and blinking is important to refine the tracking of the driver's head and compute the so-called PERCLOS, which is the percentage of time the eyes are closed over a given time interval. The latter cue is essential for noninvasive driver's alert state estimation as it has a high correlation with drowsiness. To further improve the location of the eyes under different conditions of illumination, the proposed method takes advantage of the high reflectivity of the retina to near infrared illumination employing a camera with an 850 nm wavelength filter. The paper shows that motion analysis of the salient points, in particular cluster mass centers and spatial distributions, yields better head tracking results compared to the state-of-the-art and provides measures of the driver's alert state.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference37 articles.

1. Real-Time System for Monitoring Driver Vigilance

2. Driver fatigue: The importance of identifying causal factors of fatigue when considering detection and countermeasure technologies;May;Transp. Res.,2009

3. 21. NCSDR/NHTSA Expert Panel on Driver Fatigue and Sleepiness, “Drowsy driving and automobile crashes,” Report No. DOT HS 808 707, National Center on Sleep Disorder Research, National Heart, Lung, and Blood Institute, and National Highway Traffic Safety Administration, Washington, D.C. (1998).

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eye Aspect Ratio for Real-Time Drowsiness Detection to Improve Driver Safety;Electronics;2022-10-04

2. A non-contact mental fatigue detection method for space medical experiment using multi-feature fusion model;2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2021-12

3. Random Subspace K-NN Based Ensemble Classifier for Driver Fatigue Detection Utilizing Selected EEG Channels;Traitement du Signal;2021-10-31

4. Automatic identification method for driving risk status based on multi-sensor data;Personal and Ubiquitous Computing;2021-09-14

5. Effects of partially automated driving on the development of driver sleepiness;Accident Analysis & Prevention;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3