Robust backstepping control of an underactuated one-legged hopping robot in stance phase

Author:

He Guangping,Geng Zhiyong

Abstract

SUMMARYExponentially stabilizing a non-Spring Loaded Inverted Pendulum (SLIP) model-based one-legged hopping robot in stance phase is studied. Differing from the SLIP model systems, the hopping robot with non-SLIP model considered in this paper does not restrict the center of mass of the robot coinciding to the hip joint. A specific underactuated one-legged hopping robot with two actuated arms are selected to investigate the dynamics and control problem. It is shown that the system holds the essential nonlinear prosperities of general systems and belongs to a class of second-order nonholonomic mechanical systems, which cannot be stabilized by any smooth time-invariant state feedback. By using a coordinates transform based on the so-called normalized momentum, a robust backstepping control method is presented for the specific hopping robot system. Both theoretical analysis and numerical simulations show that the robust backstepping controller can stabilize the underactuated one-legged hopping robot to its balance configuration as well as a periodic motion trajectory near to the balance configuration. These results are significative for designing a new non-SLIP model based hopping robot systems with more biological characteristics.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Control Synthesis and Verification for Wire-Borne Underactuated Brachiating Robots Using Sum-of-Squares Optimization;2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2020-10-24

2. Biologically inspired jumping robots: A comprehensive review;Robotics and Autonomous Systems;2020-02

3. Wheeled hopping robot with combustion-powered actuator;International Journal of Advanced Robotic Systems;2018-01-01

4. Analysis and comparison of three leg models for bionic locust robot based on landing buffering performance;Science China Technological Sciences;2016-08-12

5. A survey of underactuated mechanical systems;IET Control Theory & Applications;2013-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3