Motion planning of unmanned aerial vehicles in dynamic 3D space: a potential force approach

Author:

Garibeh Mohammad H.,Alshorman Ahmad M.ORCID,Jaradat Mohammad A.,Younes Ahmad Bani,Khaleel Maysa

Abstract

AbstractThis research focuses on a collision-free real-time motion planning system for unmanned aerial vehicles (UAVs) in complex three-dimensional (3D) dynamic environments based on generalized potential force functions. The UAV must survive in such a complex heterogeneous environment while tracking a dynamic target and avoiding multiple stationary or dynamic obstacles, especially at low hover flying conditions. The system framework consists of two parts. The first part is the target tracking part employing a generalized extended attractive potential force into 3D space. In contrast, the second part is the obstacle avoidance part employing a generalized extended repulsive potential force into 3D space. These forces depend on the relative position and relative velocity between the UAV and respective obstacles. As a result, the UAV is attracted to a moving or stationary target and repulsed away from moving or static obstacles simultaneously in 3D space. Accordingly, it changes its altitude and projected planner position concurrently. A real-time implementation for the system is conducted in the SPACE laboratory to perform motion planning in 3D space. The system performance is validated in real-time experiments using three platforms: two parrot bebop drones and one turtlebot robot. The pose information of the vehicles is estimated using six Vicon cameras during real-time flights. The demonstrated results show the motion planning system’s effectiveness. Also, we propose a successful mathematical solution of the local minima problem associated with the potential field method in both stationary and dynamic environments.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Reference44 articles.

1. A novel fuzzy three-dimensional grid navigation method for mobile robots

2. Autonomous mobile robot dynamic motion planning using hybrid fuzzy potential field

3. An improved potential field method for mobile robot path planning in dynamic environments

4. [21] Dong, Z. , Chen, Z. , Zhou, R. and Zhang, R. , “A Hybrid Approach of Virtual Force and a $^{*}$ Search Algorithm for UAV Path Re-Planning,” In: 2011 6th IEEE Conference on Industrial Electronics and Applications (IEEE, 2011) pp. 1140–1145.

5. Collision Avoidance for Cooperative UAVs With Optimized Artificial Potential Field Algorithm

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3