Design, testing and evaluation of an end-effector for self-relocation

Author:

Han Feng,Sun Kui,Liu Yu,Liu Hong

Abstract

SUMMARYTwo identical end-effectors are indispensable for self-relocation of a space manipulator, which is an effective way of extending its servicing capability. The prototype design is intimately linked to the requirements. The significant features and functionality of the end-effector and its grapple fixture are described, including the key analysis efforts. The characteristics of the end-effector and their suitability for self-relocation and payload handling were confirmed by testing, which used two prototype end-effectors, a semi-physical simulation testbed system with two, six degrees of freedom (DOF) industrial robot arms, and an air-bearing testbed system with a seven DOF manipulator. The results demonstrate that the end-effector satisfies the requirements and it can work well in a simulated space environment. With the compliance motion of the manipulator, the end-effector can perform soft capture and the manipulator can securely self-relocate and handle the payload.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference52 articles.

1. B. Walker and R. Vandersluis , “Design, Testing and Evaluation of Latching End-effector[C],” Proceedings of the 29th Aerospace Mechanisms Symposium, Johnson Space Center, Houston, Texas, (1995) pp. 1–16.

2. B. J. Roberts , “Using the International Space Station as a Precursor to In–Orbit Robotic Servicing[C],” Proceedings of the AIAA SPACE 2010 Conference & Exposition, Anaheim, California, (Aug. 30–Sept. 2, 2010) pp. 1–8.

3. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience

4. Preparing a new generation of space robots — A survey of research at DLR

5. A. Rusconi , R. Finotello , G. Borghi , R. Mugnuolo , A. Olivieri and F. Pasquali , “EUROPA (External use of Robotics for Payloads Automation)[C],” Proceedings of the AIAA SPACE 2001 Conference and Exhibit on International Space Station Utilization, Cape Canaveral, FL, (Oct. 15–18, 2001) pp. 1–10.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-singular terminal sliding mode control algorithm design based on extended state observer;Journal of Mechanical Science and Technology;2024-07

2. Contact detumbling toward a nutating target through deformable effectors and prescribed performance controller;Journal of Systems Engineering and Electronics;2023

3. Estimation of Vibration Characteristics of a Space Manipulator From Air Bearing Supported Test Data;Frontiers in Robotics and AI;2021-05-13

4. Design and optimization of a novel rescue end-effector;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2018-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3