Sliding mode control of a shape memory alloy actuated active flexible needle

Author:

Maria Joseph Felix Orlando,Podder Tarun

Abstract

SUMMARYIn medical interventional procedures such as brachytherapy, biopsy and radio-frequency ablation, precise tracking through the preplanned desired trajectory is very essential. This important requirement is critical due to two major reasons: anatomical obstacle avoidance and accurate targeting for avoiding undesired radioactive dose exposure or damage to neighboring tissue and critical organs. Therefore, a precise control of the needling device in the unstructured environment in the presence of external disturbance is required to achieve accurate target reaching in clinical applications. In this paper, a shape memory alloy actuated active flexible needle controlled by an adaptive sliding mode controller is presented. The trajectory tracking performance of the needle is tested while having its actual movement in an artificial tissue phantom by giving various input reference trajectories such as multi-step and sinusoidal. Performance of the adaptive sliding mode controller is compared with that of the proportional, integral and derivative controller and is proved to be the effective method in the presence of the external disturbances.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Needle Steering Controller Design for Flexible Steerable Needle Utilizing Robust Backstepping Control Strategy;IEEE Transactions on Medical Robotics and Bionics;2024-08

2. Prognosis of Tissue Stiffness Through Multilayer Perceptron Technique With Adaptive Learning Rate in Minimal Invasive Surgical Procedures;IEEE Transactions on Medical Robotics and Bionics;2024-05

3. Adaptive neural network controller for the rotating SMA actuator;Sensors and Actuators A: Physical;2024-05

4. Prediction of Bevel-Tip Needle Deflection Using CART Based Decision Tree;2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T);2024-01-18

5. Trajectory Tracking Controller Design for Percutaneous Interventional Procedures;2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T);2024-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3