A review of coupling mechanism designs for modular reconfigurable robots

Author:

Saab Wael,Racioppo Peter,Ben-Tzvi Pinhas

Abstract

SUMMARYWith the increasing demands for versatile robotic platforms capable of performing a variety of tasks in diverse and uncertain environments, the needs for adaptable robotic structures have been on the rise. These requirements have led to the development of modular reconfigurable robotic systems that are composed of a numerous self-sufficient modules. Each module is capable of establishing rigid connections between multiple modules to form new structures that enable new functionalities. This allows the system to adapt to unknown tasks and environments. In such structures, coupling between modules is of crucial importance to the overall functionality of the system. Over the last two decades, researchers in the field of modular reconfigurable robotics have developed novel coupling mechanisms intended to establish rigid and robust connections, while enhancing system autonomy and reconfigurability. In this paper, we review research contributions related to robotic coupling mechanism designs, with the aim of outlining current progress and identifying key challenges and opportunities that lay ahead. By presenting notable design approaches to coupling mechanisms and the most relevant efforts at addressing the challenges of sensorization, misalignment tolerance, and autonomous reconfiguration, we hope to provide a useful starting point for further research into the field of modular reconfigurable robotics and other applications of robotic coupling.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference77 articles.

1. J. W. Romanishin , K. Gilpin and D. Rus , “M-Blocks: Momentum-Driven, Magnetic Modular Robots,” Proceedings of the IEEE International Conference on Intelligent Robots and Systems, (2013) pp. 4288–4295.

2. V. Zykov , W. Phelps , N. Lassabe and H. Lipson , “Molecubes Extended: Diversifying Capabilities of Open-Source Modular Robotics,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, (2008) pp. 22–26.

3. V. Zykov , A. Chan and H. Lipson , “Molecubes: An Open-Source Modular Robotics Kit,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, (2007) pp. 3–6.

4. Evolved and Designed Self-Reproducing Modular Robotics

5. Self-assembly and self-repair method for a distributed mechanical system

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3