GAUSSIAN PROCESS MODELS FOR MORTALITY RATES AND IMPROVEMENT FACTORS

Author:

Ludkovski Mike,Risk Jimmy,Zail Howard

Abstract

AbstractWe develop a Gaussian process (GP) framework for modeling mortality rates and mortality improvement factors. GP regression is a nonparametric, data-driven approach for determining the spatial dependence in mortality rates and jointly smoothing raw rates across dimensions, such as calendar year and age. The GP model quantifies uncertainty associated with smoothed historical experience and generates full stochastic trajectories for out-of-sample forecasts. Our framework is well suited for updating projections when newly available data arrives, and for dealing with “edge” issues where credibility is lower. We present a detailed analysis of GP model performance for US mortality experience based on the CDC (Center for Disease Control) datasets. We investigate the interaction between mean and residual modeling, Bayesian and non-Bayesian GP methodologies, accuracy of in-sample and out-of-sample forecasting, and stability of model parameters. We also document the general decline, along with strong age-dependency, in mortality improvement factors over the past few years, contrasting our findings with the Society of Actuaries (SOA) MP-2014 and -2015 models that do not fully reflect these recent trends.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Finance,Accounting

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3