The sound of a pulsating sphere in a rarefied gas: continuum breakdown at short length and time scales

Author:

Ben-Ami Y.,Manela A.ORCID

Abstract

The pressure field of a pulsating sphere is a canonical problem in classical acoustics, used to illustrate the acoustic efficiency of a monopole source at continuum conditions. We consider the counterpart vibroacoustic and thermoacoustic problems in a rarefied gas, to investigate the effect of continuum breakdown on monopole radiation. Focusing on small-amplitude normal-to-boundary mechanical and heat-flux excitations, the perturbation field is analysed in the entire range of gas rarefaction and input frequencies. Numerical calculations are carried out via the direct simulation Monte Carlo method, and are used to validate analytical predictions in the free-molecular and near-continuum regimes. In the latter, the regularized thirteen moments model (R13) is applied, to capture the system response at states where the Navier–Stokes–Fourier (NSF) description breaks down. Comparing with the continuum inviscid solution, the results quantitate the dampening effect of gas rarefaction on source point-wise strength and acoustic power. At near-continuum conditions, the acoustic field is composed of exponentially decaying ‘compression’, ‘thermal’ and ‘Knudsen-layer’ modes, reflecting thermoviscous and higher-order rarefaction effects. With reducing rarefaction, the contributions of the latter two modes vanish, and the former degenerates into the ideal-flow inverse-to-distance decaying wave. Stronger attenuation is obtained with increasing rarefaction, where boundary sphericity results in a ‘geometric reduction’ of the molecular layer affected by the source. Notably, while the R13 model at low frequencies appears valid up to moderate gas rarefaction rates, both the NSF and R13 descriptions break down at common low Knudsen numbers at higher frequencies. Further study should therefore be carried out to extend the applicability of moment models to unsteady flows with short time scales.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3