Turbulent wake behind a concave curved cylinder

Author:

Jiang FengjianORCID,Pettersen Bjørnar,Andersson Helge I.

Abstract

We present a detailed study of the turbulent wake behind a quarter-ring curved cylinder at Reynolds number$Re=3900$(based on cylinder diameter and incoming flow velocity), by means of direct numerical simulation. The configuration is referred to as a concave curved cylinder with incoming flow aligned with the plane of curvature and towards the inner face of the cylinder. Wake flows behind this configuration are known to be complex, but have so far only been studied at low$Re$. This is the first direct numerical simulation investigation of the turbulent wake behind the concave configuration, from which we reveal new and interesting wake dynamics, and present in-depth physical interpretations. Similar to the low-$Re$cases, the turbulent wake behind a concave curved cylinder is a multi-regime and multi-frequency flow. However, in addition to the coexisting flow regimes reported at lower$Re$, we observe a new transitional flow regime at$Re=3900$. The flow field in this transitional regime is dominated not by von Kármán-type vortex shedding, but by periodic asymmetric helical vortices. Such vortex pairs exist also in some other wake flows, but are then non-periodic. Inspections reveal that the periodic motion of the asymmetric helical vortices is induced by vortex shedding in its neighbouring oblique shedding regime. The oblique shedding regime is in turn influenced by the transitional regime, resulting in a unified and remarkably low dominating frequency in both flow regimes. Owing to this synchronized frequency, the new wake dynamics in the transitional regime might easily be overlooked. In the near wake, two distinct peaks are observed in the time-averaged axial velocity distribution along the curved cylinder span, while only one peak was observed at lower$Re$. The presence of the additional peak is ascribed to a strong favourable base pressure gradient along the cylinder span. It is noteworthy that the axially directed base flow exceeded the incoming velocity behind a substantial part of the quarter-ring and even persisted upwards along the straight vertical extension. As a by-product of our study, we find that a straight vertical extension of 16 cylinder diameters is required in order to avoid any adverse effects from the upper boundary of the flow domain.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3