Structure and stability of shock waves in granular gases

Author:

Sirmas NickORCID,Radulescu Matei I.ORCID

Abstract

Previous experiments have revealed that shock waves driven through dissipative media may become unstable, for example, in granular gases, and in molecular gases undergoing strong relaxation effects. The current paper addresses this problem of shock stability at the Euler and Navier–Stokes continuum levels in a system of disks (two-dimensional) undergoing activated inelastic collisions. The dynamics of shock formation and stability is found to be in very good agreement with earlier molecular dynamic simulations (Sirmas & Radulescu, Phys. Rev. E, vol. 91, 2015, 023003). It was found that the modelling of shock instability requires the introduction of molecular noise for its development and sustenance. This is confirmed in two stability problems. In the first, the evolution of shock formation dynamics is monitored without noise, with only initial noise and with continuous molecular noise. Only the latter reproduces the results of shock instability of molecular dynamics simulations. In the second problem, the steady travelling wave solution is obtained for the shock structure in the inviscid and viscous limits and its nonlinear stability is studied with and without molecular fluctuations, again showing that instability can be sustained only in the presence of fluctuations. The continuum results show that instability takes the form of a rippled front of a wavelength comparable with the relaxation thickness of the steady shock wave, at scales at which molecular fluctuations become important, in excellent agreement with the molecular dynamic simulations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3