Effects of pressure gradient on the evolution of velocity-gradient tensor invariant dynamics on a controlled-diffusion aerofoil at

Author:

Wu H.ORCID,Moreau S.ORCID,Sandberg R. D.ORCID

Abstract

A weakly compressible flow direct numerical simulation of a controlled-diffusion aerofoil at $8^{\circ }$ geometrical angle of attack, a chord-based Reynolds number of $Re_{c}=150\,000$ and a Mach number of $M=0.25$ based on the free-stream velocity relevant to many industrial applications was conducted to improve the understanding of the impact of the pressure gradient on the development of turbulent structures. The evolution equations for the two invariants $Q$ and $R$ of the velocity-gradient tensor have been studied at various locations along the aerofoil chord on its suction side. The shape of the mean evolution of the velocity-gradient tensor invariants were found to vary strongly when the flow encounters favourable, zero and adverse pressure gradients and as well for different wall-normal locations. The coupling between the pressure-Hessian tensor and the velocity-gradient tensor was found to be the major factor that causes these changes and is greatly influenced by the mean pressure-gradient condition and the wall-normal distance. Striking differences exist from the mean trajectories of this coupling at least in the log layer and outer layer subject to different mean pressure gradients. The nonlinearity and viscous diffusion effects keep their respective invariant characters regardless of the pressure-gradient effects and wall-normal locations. The wall and the mean adverse pressure gradient were both found to suppress the vortical stretching features of the flow. These features are of great importance for the development of future turbulence models on wall-bounded flows, especially on surfaces with significant curvature such as cambered aerofoils and blades for which significant mean pressure gradients exist.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3