Stability and hysteresis of Faraday waves in Hele-Shaw cells

Author:

Li Jing,Li Xiaochen,Liao ShijunORCID

Abstract

The instability of Faraday waves in Hele-Shaw cells is investigated experimentally and theoretically. A novel hydrodynamic model involving capillary action is proposed to capture the variation of the dynamic contact line between two close walls of narrow containers. The amplitude equations are derived from the gap-averaged model. By means of Lyapunov’s first method, a good prediction of the onset threshold of forcing acceleration is obtained, which shows the model’s validity for addressing the stability problem for Faraday waves in Hele-Shaw cells. It is found that the effect of the dynamic contact line is much greater than that of Poiseuille assumption of velocity profile for the cases under investigation. A new dispersion relation is obtained, which agrees well with experimental data. However, we highly recommend the conventional dispersion relation for gravity–capillary waves, which can generally meet common needs. Surface tension is found to be a key factor of interface flows in Hele-Shaw cells. According to our experimental observations, a liquid film is found on the front wall of the Hele-Shaw cell when the wave is falling. As a property of the friction coefficient from molecular kinetics, wet and dry plates show different wetting procedures. Unlike some authors of previous publications, we attribute the hysteresis to the out-of-plane interface shape rather than to detuning, i.e. the difference between natural frequency and response frequency.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3