On the stability of a Blasius boundary layer subject to localised suction

Author:

Brynjell-Rahkola MattiasORCID,Hanifi ArdeshirORCID,Henningson Dan S.

Abstract

In this study the origins of premature transition due to oversuction in boundary layers are studied. An infinite row of circular suction pipes that are mounted at right angles to a flat plate subject to a Blasius boundary layer is considered. The interaction between the flow originating from neighbouring holes is weak and for the parameters investigated, the pipe is always found to be unsteady regardless of the state of the flow in the boundary layer. A stability analysis reveals that the appearance of boundary layer transition can be associated with a linear instability in the form of two unstable eigenmodes inside the pipe that have weak tails, which extend into the boundary layer. Through an energy budget and a structural sensitivity analysis, the origin of this flow instability is traced to the structures developing inside the pipe near the pipe junction. Although the amplitudes of the modes in the boundary layer are orders of magnitude smaller than the corresponding amplitudes inside the pipe, a Koopman analysis of the data gathered from a nonlinear direct numerical simulation confirms that it is precisely these disturbances that are responsible for transition to turbulence in the boundary layer due to oversuction.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference43 articles.

1. Mutual inductance instability of the tip vortices behind a wind turbine

2. Gregory, N. 1962 On critical suction conditions for laminar boundary-layer control by suction into perforations. Tech. Rep. 24, 213. Aeronautical Research Council.

3. Spectral Properties of Dynamical Systems, Model Reduction and Decompositions

4. Flow physics of discrete boundary layer suction – measurements and predictions

5. Chevalier, M. , Schlatter, P. , Lundbladh, A.  & Henningson, D. S. 2007 SIMSON – A pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep. TRITA-MEK 2007:07. Department of Mechanics, KTH Royal Institute of Technology.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3