Abstract
We present experiments and theory for viscous fingering of a suspension of non-colloidal particles undergoing radial flow in a Hele-Shaw cell. As the suspension displaces air, shear-induced migration causes particles to move faster than the average suspension velocity and to accumulate on the suspension–air interface. The resultant particle accumulation generates a pattern in which low-concentration, low-viscosity suspension displaces high-concentration, high-viscosity suspension and is unstable due to the classic Saffman–Taylor instability mechanism. While the destabilising mechanism is well-understood, what remains unknown is the stabilising mechanism that suppresses fine fingers characteristic of miscible fingering. In this work, we demonstrate how the stable suspension–air interface interacts with the unstable miscible interface to set the critical wavelength. We present a linear stability analysis for the time-dependent radial flow and show that the wavenumber predicted by the analysis is in good agreement with parametric experiments investigating the effect of suspension concentration and gap thickness of the Hele-Shaw cell.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献