Abstract
Oscillatory flow around a cluster of four circular cylinders in a diamond arrangement is investigated using two-dimensional direct numerical simulation over Keulegan–Carpenter numbers (KC) ranging from 4 to 12 and Reynolds numbers (Re) from 40 to 230 at four gap-to-diameter ratios (G) of 0.5, 1, 2 and 4. Three types of flows, namely synchronous, quasi-periodic and desynchronized flows (along with 14 flow regimes) are mapped out in the (G, KC, Re)-parameter space. The observed flow characteristics around four cylinders in a diamond arrangement show a few unique features that are absent in the flow around four cylinders in a square arrangement reported by Tong et al. (J. Fluid Mech., vol. 769, 2015, pp. 298–336). These include (i) the dominance of flow around the cluster-scale structure at $G=0.5$ and 1, (ii) a substantial reduction of regime D flows in the regime maps, (iii) new quasi-periodic (phase trapping) $\text{D}^{\prime }$ (at $G=0.5$ and 1) and period-doubling $\text{A}^{\prime }$ flows (at $G=1$) and most noteworthily (iv) abnormal behaviours at ($G\leqslant 2$) (referred to as holes hereafter) such as the appearance of spatio-temporal synchronized flows in an area surrounded by a single type of synchronized flow in the regime map ($G=0.5$). The mode competition between the cluster-scale and cylinder-scale flows is identified as the key flow mechanism responsible for those unique flow features, with the support of evidence derived from quantitative analysis. Phase dynamics is introduced for the first time in bluff-body flows, to the best knowledge of the authors, to quantitatively interpret the flow response (e.g. quasi-periodic flow features) around the cluster. It is instrumental in revealing the nature of regime $\text{D}^{\prime }$ flows where the cluster-scale flow features are largely synchronized with the forcing of incoming oscillatory flow (phase trapping) but are modulated by localized flow features.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献