Hypersonic flow over spherically blunted cone capsules for atmospheric entry. Part 1. The sharp cone and the sphere

Author:

Hornung H. G.ORCID,Martinez Schramm Jan,Hannemann Klaus

Abstract

Depending on the cone half-angle and the inverse normal-shock density ratio $\unicode[STIX]{x1D700}$, hypersonic flow over a spherically blunted cone exhibits two regimes separated by an almost discontinuous jump of the body end of the sonic line from a point on the spherical nose to the shoulder of the cone, here called sphere behaviour and cone behaviour. The inflection point of the shock wave in sphere behaviour is explained. In Part 1 we explore the two elements of the capsule shape, the sphere and the sharp cone with detached shock, theoretically and computationally, in order to put the treatment of the full capsule shape on a sound basis. Starting from the analytical expression for the shock detachment angle of a cone given by Hayes & Probstein (Hypersonic Flow Theory, 1959, Academic Press) we make a hypothesis for the sharp cone, about the functional form of the dependence of dimensionless quantities on $\unicode[STIX]{x1D700}$ and a cone angle parameter, $\unicode[STIX]{x1D702}$. In the critical part of atmospheric entry the shock shape and drag of the capsule are insensitive to viscous effects, so that much can be learned from inviscid studies. Accordingly, the hypothesis is tested by making a large number of Euler computations to cover the parameter space: Mach number, specific heat ratio and cone angle. The results confirm the hypothesis in the case of the dimensionless shock stand-off distance as well as for the drag coefficient, yielding accurate analytical functions for both. This reduces the number of independent parameters of the problem from three to two. A functional form of the shock stand-off distance is found for the transition from the $90^{\circ }$ cone to the sphere. Although the analysis assumes a calorically perfect gas, the results may be carried over to the high-enthalpy real-gas situation if the normal-shock density ratio is replaced by the density ratio based on the average density along the stagnation streamline (see e.g. Stulov, Izv. AN SSSR Mech. Zhidk. Gaza, vol. 4, 1969, pp. 142–146; Hornung, J. Fluid Mech., vol. 53, 1972, pp. 149–176; Wen & Hornung, J. Fluid Mech., vol. 299, 1995, pp. 389–405).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3