Abstract
A non-perturbative nonlinear theory for moderately dense gas–solid suspensions is outlined within the framework of the Boltzmann–Enskog equation by extending the work of Saha & Alam (J. Fluid Mech., vol. 833, 2017, pp. 206–246). A linear Stokes’ drag law is adopted for gas–particle interactions, and the viscous dissipation due to hydrodynamic interactions is incorporated in the second-moment equation via a density-corrected Stokes number. For the homogeneous shear flow, the present theory provides a unified treatment of dilute to dense suspensions of highly inelastic particles, encompassing the high-Stokes-number rapid granular regime ($St\rightarrow \infty$) and its small-Stokes-number counterpart, with quantitative agreement for all transport coefficients. It is shown that the predictions of the shear viscosity and normal-stress differences based on existing theories deteriorate markedly with increasing density as well as with decreasing Stokes number and restitution coefficient.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献