On standing gravity wave-depression cavity collapse and jetting

Author:

Krishna Raja D.,Das S. P.ORCID,Hopfinger E. J.

Abstract

Parametrically forced gravity waves can give rise to high-velocity surface jets via the wave-depression cavity implosion. The present results have been obtained in circular cylindrical containers of 10 and 15 cm in diameter (Bond number of order $10^{3}$) in the large fluid depth limit. First, the phase diagrams of instability threshold and wave breaking conditions are determined for the working fluid used, here water with 1 % detergent added. The collapse of the wave-depression cavity is found to be self-similar. The exponent $\unicode[STIX]{x1D6FC}$ of the variation of the cavity radius $r_{m}$ with time $\unicode[STIX]{x1D70F}$, in the form $r_{m}/R\propto \unicode[STIX]{x1D70F}^{\unicode[STIX]{x1D6FC}}$, is close to 0.5, indicative of inertial collapse, followed by a viscous cut-off of $\unicode[STIX]{x1D6FC}\approx 1$. This supports a Froude number scaling of the surface jet velocity caused by cavity collapse. The dimensionless jet velocity scales with the cavity depth that is shown to be proportional to the last stable wave amplitude. It can be expressed by a power law or in terms of finite time singularity related to a singular wave amplitude that sets the transition from a non-pinching to pinch-off cavity collapse scenario. In terms of forcing amplitude, cavity collapse and jetting are found to occur in bands of events of non-pinching and pinching of a bubble at the cavity base. At large forcing amplitudes, incomplete cavity collapse and splashing can occur and, at even larger forcing amplitudes, wave growth is again stable up to the singular wave amplitude. When the cavity is formed, an impulse model shows the importance of the singular cavity diameter that determines the strength of the impulse.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3