Quantification of added-mass effects using particle image velocimetry data for a translating and rotating flat plate

Author:

Corkery S. J.ORCID,Babinsky H.ORCID,Graham W. R.ORCID

Abstract

Added mass characterises the additional force required to accelerate a body when immersed in an ideal fluid. It originates from an asymmetric change to the surrounding pressure field so the fluid velocity satisfies the no-through-flow condition. This is intrinsically linked with the production of boundary vorticity. A body in potential flow may be represented by an inviscid vortex sheet and added-mass forces determined using impulse methods. However, most fluids are not inviscid. It has been theorised that viscosity causes the ‘added-mass vorticity’ to form in an intensely concentrated boundary layer region, equivalent to the inviscid distribution. Experimentally this is difficult to confirm due to limited measurement resolution and the presence of additional boundary layer vorticity, some the result of induced velocities from free vorticity in the flow field. The aim of this paper is to propose a methodology to isolate the added-mass vorticity experimentally with particle image velocimetry, and confirm that it agrees with potential flow theory even in separated flows. Experiments on a flat-plate wing undergoing linear and angular acceleration show close agreement between the theoretical and measured added-mass vorticity distributions. This is demonstrated to be independent of changes to flow topology due to flow separation. Flow field impulse and net force are also consistent with theory. This paper provides missing experimental evidence coupling added mass and the production of boundary layer vorticity, as well as confirmation that inviscid unsteady flow theory describes the added-mass effect correctly even in well-developed viscous flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3