Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow

Author:

Fan DixiaORCID,Wang ZhichengORCID,Triantafyllou Michael S.ORCID,Karniadakis George Em

Abstract

Flexible structures placed within an oncoming flow exhibit far more complex vortex-induced dynamics than flexibly mounted rigid cylinders, because they involve the distributed interaction between the structural and wake dynamics along the entire span. Hence, mapping the well-understood properties of rigid cylinder vibrations to those of strings and beams has been elusive. We show here with a combination of experiments, conducted at Reynolds number, $Re$ from 250 to 2300, and computational fluid dynamics that such a mapping is possible for flexible structures in uniform flow undergoing combined cross-flow and in-line oscillations, but only when additional concepts are introduced to model the extended coupling of the flow and the structure. The in-line response consists of largely standing waves that define cells, each cell spanning the distance between adjacent nodes, over which stable vortical patterns form, whose features (‘2S’ versus ‘P$+$S’) depend strongly on the true reduced velocity, $V_{r}=U/f_{y}d$, where $U$ is the inflow velocity, $f_{y}$ is the cross-flow vibration frequency and $d$ is the cylinder diameter, and the phase angle between in-line and cross-flow response; while the cross-flow response may contain travelling waves, breaking the symmetry of the problem. The axial distribution of the highly variable effective added masses in the cross-flow and in-line directions, and the local phase angle between in-line and cross-flow motion determine the single frequency of cross-flow response, while the in-line response vibrates at twice the cross-flow frequency. The cross-flow and in-line lift coefficients in phase with velocity depend strongly on the true reduced velocity but also on the local phase angle between in-line and cross-flow motions. Modal shapes can be defined for in-line and cross-flow, based on the resemblance of the response to conventional modes, which can be in the ratio of either ‘$2n/n$’ or ‘$(2n-1)/n$’, where $n$ is the order of the cross-flow response mode. We use an underwater optical tracking system to reconstruct the sectional fluid forces in a flexible structure and show that, once the cross-flow and in-line motion features are known, employing strip theory and the hydrodynamic coefficients obtained from forced rigid cylinder experiments allows us to predict the distributed forces accurately.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3