Abstract
The effectiveness of streak modes in controlling the oblique-type breakdown in a supersonic boundary-layer at Mach 2.0 is investigated using direct numerical simulations. Investigations in the literature have shown the effectiveness of streak modes in delaying the onset of transition dominated by two-dimensional waves, but in oblique breakdown, three-dimensional waves and a strong streak mode dominate the transition process. Paredes et al. (J. Fluid Mech., vol. 831, 2017, pp. 524–553) discussed the possible stabilization of supersonic boundary layers by optimally growing streaks using parabolized stability equations. However, no study has as yet been reported regarding direct nonlinear control of oblique breakdown. This study deals with the effects of large-amplitude decaying streak modes generated by a blowing–suction strip at the wall to control full breakdown in a reference case. Modes with four to five times the fundamental wavenumber are found to be beneficial for controlling the transition. In the first region after the control-mode forcing, the beneficial mean-flow distortion (MFD), generated by inducing the control mode, is solely responsible for hampering the growth of the fundamental-mode. On the whole, the MFD and the three-dimensional part of the control contribute equally towards controlling the oblique breakdown. The results show significant suppression of transition, and substantial improvements have been observed in the levels of the skin-friction coefficient and wall-temperature in comparison to the uncontrolled case. Moreover, refreshing the control using an additional downstream control strip increases the gain. However, the forcing amplitude must be carefully chosen in order not to introduce a generalized inflection point in the spanwise averaged mean flow invoking enhanced disturbance growth.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献