Wave–vortex interactions, remote recoil, the Aharonov–Bohm effect and the Craik–Leibovich equation

Author:

McIntyre Michael EdgeworthORCID

Abstract

Three examples of non-dissipative yet cumulative interaction between a single wavetrain and a single vortex are analysed, with a focus on effective recoil forces, local and remote. Local recoil occurs when the wavetrain overlaps the vortex core. All three examples comply with the pseudomomentum rule. The first two examples are two-dimensional and non-rotating (shallow water or gas dynamical). The third is rotating, with deep-water gravity waves inducing an Ursell ‘anti-Stokes flow’. The Froude or Mach number, and the Rossby number in the third example, are assumed small. Remote recoil is all or part of the interaction in all three examples, except in one special limiting case. That case is found only within a severely restricted parameter regime and is the only case in which, exceptionally, the effective recoil force can be regarded as purely local and identifiable with the celebrated Craik–Leibovich vortex force – which corresponds, in the quantum fluids literature, to the Iordanskii force due to a phonon current incident on a vortex. Another peculiarity of that exceptional case is that the only significant wave refraction effect is the Aharonov–Bohm topological phase jump.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference48 articles.

1. On wave-current interaction theories of Langmuir circulations

2. Scattering of dislocated wave fronts by vertical vorticity and the Aharonov–Bohm effect. I. Shallow water;Coste;Phys. Rev. E,1999

3. Significance of Electromagnetic Potentials in the Quantum Theory

4. Surface waves with rotation: An exact solution

5. Magnus force in superfluids and superconductors

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3