Abstract
Turbulent flows in a thin layer can develop an inverse energy cascade leading to spectral condensation of energy when the layer height is smaller than a certain threshold. These spectral condensates take the form of large-scale vortices in physical space. Recently, evidence for bistability was found in this system close to the critical height: depending on the initial conditions, the flow is either in a condensate state with most of the energy in the two-dimensional (2-D) large-scale modes, or in a three-dimensional (3-D) flow state with most of the energy in the small-scale modes. This bistable regime is characterised by the statistical properties of random and rare transitions between these two locally stable states. Here, we examine these statistical properties in thin-layer turbulent flows, where the energy is injected by either stochastic or deterministic forcing. To this end, by using a large number of direct numerical simulations (DNS), we measure the decay time $\unicode[STIX]{x1D70F}_{d}$ of the 2-D condensate to 3-D flow state and the build-up time $\unicode[STIX]{x1D70F}_{b}$ of the 2-D condensate. We show that both of these times $\unicode[STIX]{x1D70F}_{d},\unicode[STIX]{x1D70F}_{b}$ follow an exponential distribution with mean values increasing faster than exponentially as the layer height approaches the threshold. We further show that the dynamics of large-scale kinetic energy may be modelled by a stochastic Langevin equation. From time-series analysis of DNS data, we determine the effective potential that shows two minima corresponding to the 2-D and 3-D states when the layer height is close to the threshold.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference57 articles.
1. Extreme fluctuations and the finite lifetime of the turbulent state;Goldenfeld;Phys. Rev. E,2010
2. Adaptive Multilevel Splitting for Rare Event Analysis
3. On the edge of an inverse cascade;Seshasayanan;Phys. Rev. E,2014
4. Finite-size effects in forced two-dimensional turbulence
5. Split energy cascade in turbulent thin fluid layers
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献