Inclined slow acoustic waves incident to stagnation point probes in supersonic flow

Author:

Schilden ThomasORCID,Schröder Wolfgang

Abstract

Tunnel noise in supersonic testing facilities is known to be a decisive factor in boundary layer transition experiments. It defines initial conditions for the growth of modal instabilities by the receptivity mechanism. That is, to interpret experimental results, the determination of tunnel noise is of crucial importance. It is common to use stagnation point probes equipped with pressure transducers in supersonic flows, but since tunnel noise undergoes modulation during the measurement, the probes must be calibrated. The predominant component of tunnel noise is caused by the nozzle boundary layer which radiates highly inclined slow acoustic waves. Therefore, the calibration of stagnation point probes for these disturbances is essential. For quasi-steady deviations from the free stream, an analytic reduced-order method holds. A corresponding conflicting model derived by Stainback & Wagner (1972, AIAA Paper 72-1003) is revised and corrected. Inclined slow acoustic waves generate higher pressure perturbations at the probe than non-inclined waves. In general, costly three-dimensional direct numerical simulations can be used for calibration. In this study, however, new axisymmetric boundary conditions are proposed to reduce the problem to two dimensions to efficiently investigate the detection of incident inclined slow acoustic waves by stagnation point probes. A cylindrical probe with a rounded edge is investigated in supersonic flow at a Mach number $Ma=5.9$. For the inclination angle of radiated slow acoustic waves, stagnation point pressure fluctuations abruptly decay with increasing Strouhal number and a similar behaviour can be seen at constant Strouhal number with increasing inclination angle. Two simple criteria for the onset of decay based on the radial wavenumber are deduced. Furthermore, stagnation point pressure fluctuations were decomposed into an initial pulse impact and resonant amplification to separately investigate the effects. The initial pulse determines the overall pressure signal. At high inclination angles, a new mechanism for resonance caused by a surface pressure wave travelling at the phase speed of the incident wave was found to supersede resonance caused by oscillating acoustic waves prevailing at low inclination angles.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference39 articles.

1. Direct Numerical Simulation on the Receptivity, Instability, and Transition of Hypersonic Boundary Layers

2. Zhang, C.  & Duan, L. 2015 Acoustic radiation from high-speed turbulent boundary layers in a tunnel-like environment. AIAA Paper 2015-0839.

3. Summary of Hypersonic Boundary-Layer Transition Experiments on Blunt Bodies with Roughness

4. Cut-cell method based large-eddy simulation of tip-leakage flow

5. Pate, S. R. 1977 Dominance of radiated aerodynamic noise on boundary-layer transition in supersonic-hypersonic wind tunnels. PhD thesis, Tennessee University.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3