Marangoni circulation by UV light modulation on sessile drop for particle agglomeration

Author:

Li Tianyi,Kar Aravinda,Kumar RanganathanORCID

Abstract

An analytical solution of a biharmonic equation is presented in axisymmetric toroidal coordinates for Stokes flow due to surface tension gradient on the free surface of sessile drops. The stream function profiles exhibit clockwise and counter-clockwise toroidal volumes. The ring or dot formed by the downward dividing streamlines between these volumes predicts the experimentally deposited particle ring or dot well. This finding suggests that the downward dividing streamline can be taken to be a reasonable indicator of where deposition occurs. Different light patterns directed at different locations of the droplet can give rise to a single spot or ring. A relationship between the positions of the light intensity peak and possible locations of particle deposition is analysed to demonstrate that the streamlines can be generated on-demand to achieve particle deposition at predetermined locations on the substrate. Toroidal corner vortices called Moffatt eddies have appeared in other corner flows and develop in this optical Marangoni flow as well near the contact line.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3