Granular surface flow on an asymmetric conical heap

Author:

Mandal Sandip,Khakhar D. V.ORCID

Abstract

We carry out an experimental study of the granular surface flow of nearly monodisperse glass beads on a conical heap formed on a rough circular disc by a narrow stream of the particles from a hopper, with the pouring point displaced from the centre of the disc. During the growth phase, an axisymmetric heap is formed, which grows either by periodic avalanches or by non-periodic avalanches that occur randomly over the azimuthal location of the heap, depending on the operating conditions and system properties. The dynamics of heap growth is characterized by the variation of the heap height, angle of repose and the angular velocity of the periodic avalanche with time, for different mass flow rates from the hopper. When the base of the heap reaches the edge of the disc closest to the pouring point, the heap stops growing and a steady surface flow of particles is developed on the heap surface, with particles flowing over the edge of the disc into a collection tray. The geometry is a unique example of a granular flow on an erodible bed without any bounding side walls. The corresponding steady state geometry of the asymmetric heap is characterized by means of surface contours and angles of repose. The streamwise and transverse surface velocities are measured using high-speed video photography and image analysis for different mass flow rates. The flowing layer thickness is measured by immersing a coated needle in the flow at different positions on the mid-line of the flow. The surface angle of the flowing layer is found to be significantly smaller than the angle of repose and to be independent of the mass flow rate. The velocity profiles at different streamwise positions for different mass flow rates are found to be geometrically similar and are well described by Gaussian functions. The flowing layer thickness is calculated from a model using the measured surface velocities. The predicted values match the measured values quite well.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference32 articles.

1. Flows of Dense Granular Media

2. Scaling relations for granular flow in quasi-two-dimensional rotating cylinders;Orpe;Phys. Rev. E,2001

3. Surface flows of granular materials. A modified picture for thick avalanches;Boutreux;Phys. Rev. E,1998

4. Selection of dune shapes and velocities Part 1: Dynamics of sand, wind and barchans

5. Corridors of barchan dunes: stability and size selection;Hersen;Phys. Rev. E,2004

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3