Helicoidal particles in turbulent flows with multi-scale helical injection

Author:

Biferale L.ORCID,Gustavsson K.ORCID,Scatamacchia R.

Abstract

We present numerical and theoretical results concerning the properties of turbulent flows with strong multi-scale helical injection. We perform direct numerical simulations of the Navier–Stokes equations under a random helical stirring with power-law spectrum and with different intensities of energy and helicity injections. We show that there exists three different regimes where the forward energy and helicity inertial transfers are: (i) both leading with respect to the external injections, (ii) energy transfer is leading and helicity transfer is sub-leading and (iii) both are sub-leading and helicity is maximal at all scales. As a result, the cases (ii)–(iii) give flows with Kolmogorov-like inertial energy cascade and tuneable helicity transfers/contents. We further explore regime (iii) by studying its effect on the kinetics of point-like isotropic helicoids, particles whose dynamics is isotropic but breaks parity invariance. We investigate small-scale fractal clustering and preferential sampling of intense helical flow structures. Depending on their structural parameters, the isotropic helicoids either preferentially sample co-chiral or anti-chiral flow structures. We explain these findings in limiting cases in terms of what is known for spherical particles of different densities and degrees of inertia. Furthermore, we present theoretical and numerical results for a stochastic model where dynamical properties can be calculated using analytical perturbation theory. Our study shows that a suitable tuning of the stirring mechanism can strongly modify the small-scale turbulent helical properties and demonstrates that isotropic helicoids are the simplest particles able to preferentially sense helical properties in turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinetic Helicity in the Earth's Atmosphere;Helicities in Geophysics, Astrophysics, and Beyond;2023-12-15

2. Dynamic Phase Alignment in Navier-Stokes Turbulence;Physical Review Letters;2021-12-30

3. Variable energy flux in turbulence;Journal of Physics A: Mathematical and Theoretical;2021-12-09

4. Lord Kelvin's isotropic helicoid;Physical Review Fluids;2021-07-13

5. Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence;New Journal of Physics;2019-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3