Kinematics and wake of freely falling cylinders at moderate Reynolds numbers

Author:

Toupoint Clément,Ern PatriciaORCID,Roig Véronique

Abstract

We investigated experimentally the motion of elongated finite-length cylinders (length $L$, diameter $d$) freely falling under the effect of buoyancy in a low-viscosity fluid otherwise at rest. For cylinders with densities $\unicode[STIX]{x1D70C}_{c}$ close to the density $\unicode[STIX]{x1D70C}_{f}$ of the fluid ($\overline{\unicode[STIX]{x1D70C}}=\unicode[STIX]{x1D70C}_{c}/\unicode[STIX]{x1D70C}_{f}\simeq 1.16$), we explored the effect of the body volume by varying the Archimedes number $Ar$ (based on the body equivalent diameter) between 200 and 1100, as well as the effect of their length-to-diameter ratios $L/d$ ranging from 2 to 20. A shadowgraphy technique involving two cameras mounted on a travelling cart was used to track the cylinders along their fall over a distance longer than $30L$. A dedicated image processing algorithm was further implemented to properly reconstruct the position and orientation of the cylinders in the three-dimensional space. In the range of parameters explored, we identified three main types of paths, matching regimes known to exist for three-dimensional bodies (short-length cylinders, disks and spheres). Two of these are stationary, namely, the rectilinear motion and the large-amplitude oscillatory motion (also referred to as fluttering or zigzag motion), and their characterization is the focus of the present paper. Furthermore, in the transitional region between these two regimes, we observed irregular low-amplitude oscillatory motions, that may be assimilated to the A-regimes or quasi-vertical regimes of the literature. Flow visualization using dye released from the bodies uncovered the existence of different types of vortex shedding in the wake of the cylinders, according to the style of path. The detailed analysis of the body kinematics in the fluttering regime brought to light a series of remarkable properties. In particular, when normalized with the characteristic velocity scale $u_{0}=\sqrt{(\overline{\unicode[STIX]{x1D70C}}-1)gd}$ and the characteristic length scale $l_{0}=\sqrt{dL}$, the mean vertical velocity $\overline{u_{Z}}$ and the frequency $f$ of the oscillations become almost independent of $L/d$ and $Ar$. The use of the length scale $l_{0}$ and of the gravitational velocity scale to build the Strouhal number $St^{\ast }=fl_{0}/u_{0}$ allowed us to generalize to short ($0.1\leqslant L/d\leqslant 0.5$) and elongated cylinders ($2\leqslant L/d\leqslant 12$), the result $St^{\ast }\simeq 0.1$. An interpretation of $l_{0}$ as a characteristic length scale associated with the oscillatory recirculation thickness generated near the body ends is proposed. In addition, the rotation rate of the cylinders scales with $u_{0}/L$, for all $L/d$ and $Ar$ investigated. Furthermore, the phase difference between the oscillations of the velocity component $u$ along the cylinder axis and of the inclination angle $\unicode[STIX]{x1D703}$ of the cylinder is approximately constant, whatever the elongation ratio $L/d$ and the Archimedes number $Ar$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3