Nonlinear and time-dependent equivalent-barotropic flows

Author:

Zavala Sansón LuisORCID

Abstract

Some oceanic and atmospheric flows may be modelled as equivalent-barotropic systems, in which the horizontal fluid velocity varies in magnitude at different vertical levels while keeping the same direction. The governing equations at a specific level are identical to those of a homogeneous flow over an equivalent depth, determined by a pre-defined vertical structure. The idea was proposed by Charney (J. Met., vol. 6 (6), 1949, pp. 371–385) for modelling a barotropic atmosphere. More recently, steady, linear formulations have been used to study oceanic flows. In this paper, the nonlinear, time-dependent model with variable topography is examined. To include nonlinear terms, we assume suitable approximations and evaluate the associated error in the dynamical vorticity equation. The model is solved numerically to investigate the equivalent-barotropic dynamics in comparison with a purely barotropic flow. We consider three problems in which the behaviour of homogeneous flows has been well established either experimentally, analytically or observationally in past studies. First, the nonlinear evolution of cyclonic vortices around a topographic seamount is examined. It is found that the vortex drift induced by the mountain is modified according to the vertical structure of the flow. When the vertical structure is abrupt, the model effectively isolates the surface flow from both inviscid and viscous topographic effects (due to the shape of the bottom and Ekman friction, respectively). Second, the wind-driven flow in a closed basin with variable topography is studied (for a flat bottom this is the well-known Stommel problem). For a zonally uniform, negative wind-stress curl in the homogeneous case, a large-scale, anticyclonic gyre is formed and displaced southward due to topographic effects at the western slope of the basin. The flow reaches a steady state due to the balance between topographic,$\unicode[STIX]{x1D6FD}$, wind-stress and bottom friction effects. However, in the equivalent-barotropic simulations with abrupt vertical structure, such an equilibrium cannot be reached because the forcing effects at the surface are enhanced, while bottom friction effects are reduced. As a result, the unsteady flow is decomposed as a set of planetary waves. A third problem consists of performing simulations of the wind-driven flow over realistic bottom topography in the Gulf of Mexico. The formation of the so-called Campeche gyre is explored. It is found that such circulation may be consistent with the equivalent-barotropic dynamics.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3