Drag of a heated sphere at low Reynolds numbers in the absence of buoyancy

Author:

Ganguli SwetavaORCID,Lele Sanjiva K.

Abstract

Fully resolved simulations are used to quantify the effects of heat transfer in the absence of buoyancy on the drag of a spatially fixed heated spherical particle at low Reynolds numbers ($Re$) in the range $10^{-3}\leqslant Re\leqslant 10$ in a variable-property fluid. The case where buoyancy is present is analysed in a subsequent paper. This analysis is carried out without making any assumptions on the amount of heat addition from the sphere and thus encompasses both the heating regime where the Boussinesq approximation holds and the regime where it breaks down. The particle is assumed to have a low Biot number, which means that the particle is uniformly at the same temperature and has no internal temperature gradients. Large deviations in the value of the drag coefficient as the temperature of the sphere increases are observed. When $Re<O(10^{-2})$, these deviations are explained using a low-Mach-number perturbation analysis as irrotational corrections to a Stokes–Oseen base flow. Correlations for the drag and Nusselt number of a heated sphere are proposed for the range of Reynolds numbers $10^{-3}\leqslant Re\leqslant 10$ which fit the computationally obtained values with less than 1 % and 3 % errors, respectively. These correlations can be used in simulations of gas–solid flows where the accuracy of the drag law affects the prediction of the overall flow behaviour. Finally, an analogy to incompressible flow over a modified sphere is demonstrated.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference60 articles.

1. Numerical solution of heat and mass transfer from spheroids in axisymmetric flow;Masliyah;Prog. Heat Mass Transfer,1972

2. Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium;Rybczynski;Bull. Acad. Sci. Cracovie,1911

3. LXXV. Experiments on the resistance of the air to falling spheres

4. Extension of Goldstein's series for the Oseen drag of a sphere

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3