A numerical investigation of fluid flows induced by the oscillations of thin plates and evaluation of the associated hydrodynamic forces

Author:

Nuriev Artem N.ORCID,Kamalutdinov Airat M.,Egorov Andrey G.

Abstract

The paper is devoted to the problem of harmonic oscillations of thin plates in a viscous incompressible fluid. The two-dimensional flows caused by the plate oscillations and their hydrodynamic influence on the plates are studied. The fluid motion is described by the non-stationary Navier–Stokes equations, which are solved numerically on the basis of the finite volume method. The simulation is carried out for plates with different thicknesses and shapes of edges in a wide range of control parameters of the oscillatory process: dimensionless frequency and amplitude of oscillations. For the first time in the framework of one model all two-dimensional flow regimes, which were found earlier in experimental studies, are described. Two new flow regimes emerging along the stability boundaries of symmetric flow regimes are localized. The map of flow regimes in the frequency–amplitude plane is constructed. The analysis of the hydrodynamic influence of flows on the plates allow us to establish new effects associated with the influence of the shape of the plates on the drag and inertia forces. Due to these effects, the values of hydrodynamic forces can differ by 90 % at the same parameters of the oscillation. The lower and upper estimates of hydrodynamic forces obtained in the work have a good agreement with the experimental data presented in the literature.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3