Quasistatic magnetoconvection: heat transport enhancement and boundary layer crossing

Author:

Lim Zi Li,Chong Kai Leong,Ding Guang-Yu,Xia Ke-QingORCID

Abstract

We present a numerical study of quasistatic magnetoconvection in a cubic Rayleigh–Bénard (RB) convection cell subjected to a vertical external magnetic field. For moderate values of the Hartmann number $Ha$ (characterising the strength of the stabilising Lorentz force), we find an enhancement of heat transport (as characterised by the Nusselt number $Nu$). Furthermore, a maximum heat transport enhancement is observed at certain optimal $Ha_{opt}$. The enhanced heat transport may be understood as a result of the increased coherence of the thermal plumes, which are elementary heat carriers of the system. To our knowledge this is the first time that a heat transfer enhancement by the stabilising Lorentz force in quasistatic magnetoconvection has been observed. We further found that the optimal enhancement may be understood in terms of the crossing of the thermal and the momentum boundary layers (BL) and the fact that temperature fluctuations are maximum near the position where the BLs cross. These findings demonstrate that the heat transport enhancement phenomenon in the quasistatic magnetoconvection system belongs to the same universality class of stabilising–destabilising (S–D) turbulent flows as the systems of confined Rayleigh–Bénard (CRB), rotating Rayleigh–Bénard (RRB) and double-diffusive convection (DDC). This is further supported by the findings that the heat transport, boundary layer ratio and temperature fluctuations in magnetoconvection at the boundary layer crossing point are similar to the other three cases. A second type of boundary layer crossing is also observed in this work. In the limit of $Re\gg Ha$, the (traditionally defined) viscous boundary $\unicode[STIX]{x1D6FF}_{v}$ is found to follow a Prandtl–Blasius-type scaling with the Reynolds number $Re$ and is independent of $Ha$. In the other limit of $Re\ll Ha$, $\unicode[STIX]{x1D6FF}_{v}$ exhibits an approximate ${\sim}Ha^{-1}$ dependence, which has been predicted for a Hartmann boundary layer. Assuming the inertial term in the momentum equation is balanced by both the viscous and Lorentz terms, we derived an expression $\unicode[STIX]{x1D6FF}_{v}=H/\sqrt{c_{1}Re^{0.72}+c_{2}Ha^{2}}$ (where $H$ is the height of the cell) for all values of $Re$ and $Ha$, which fits the obtained viscous boundary layer well.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3