Oscillatory thermocapillary instability of a film heated by a thick substrate

Author:

Batson W.ORCID,Cummings L. J.ORCID,Shirokoff D.,Kondic L.ORCID

Abstract

In this work we consider a new class of oscillatory instabilities that pertain to thermocapillary destabilization of a liquid film heated by a solid substrate. We assume the substrate thickness and substrate–film thermal conductivity ratio are large so that the effect of substrate thermal diffusion is retained at leading order in the long-wave approximation. As a result, the system dynamics is described by a nonlinear partial differential equation for the film thickness that is non-locally coupled to the full substrate heat equation. Perturbing about a steady quiescent state, we find that its stability is described by a non-self-adjoint eigenvalue problem. We show that, under appropriate model parameters, the linearized eigenvalue problem admits complex eigenvalues that physically correspond to oscillatory (in time) instabilities of the thin-film height. As the principal results of our work, we provide a complete picture of the susceptibility to oscillatory instabilities for different model parameters. Using this description, we conclude that oscillatory instabilities are more relevant experimentally for films heated by insulating substrates. Furthermore, we show that oscillatory instability where the fastest-growing (most unstable) wavenumber is complex, arises only for systems with sufficiently large substrate thicknesses. Finally, we discuss adaptation of our model to a practical setting and make predictions of conditions at which the reported instabilities can be observed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3