Abstract
According to the celebrated Bolgiano–Obukhov (Bolgiano, J. Geophys. Res., vol. 64 (12), 1959, pp. 2226–2229; Obukhov, Dokl. Akad. Nauk SSSR, vol. 125, 1959, p. 1246) phenomenology for moderately stably stratified turbulence, the energy spectrum in the inertial range shows a dual scaling: the kinetic energy follows (i) ${\sim}k^{-11/5}$ for $k<k_{B}$, and (ii) ${\sim}k^{-5/3}$ for $k>k_{B}$, where $k_{B}$ is the Bolgiano wavenumber. The $k^{-5/3}$ scaling, akin to passive scalar turbulence, is a direct consequence of the assumption that buoyancy is insignificant for $k>k_{B}$. We revisit this assumption, and using the constancy of kinetic and potential energy fluxes and simple theoretical analysis, we find that the $k^{-5/3}$ spectrum is absent. This is because the velocity field at small scales is too weak to establish a constant kinetic energy flux as in passive scalar turbulence. A quantitative condition for the existence of the second regime is also derived in the paper.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献