Vorticity dynamics in a spatially developing liquid jet inside a co-flowing gas

Author:

Zandian A.ORCID,Sirignano W. A.ORCID,Hussain F.ORCID

Abstract

A three-dimensional transient round liquid jet within a low-speed coaxial outer gas flow is numerically simulated and analysed via vortex dynamics ($\unicode[STIX]{x1D706}_{2}$ analysis). Two types of surface deformations are distinguished, which are separated by a large indentation on the jet stem. First, there are those inside the recirculation zone behind the leading cap – directly affecting the cap dynamics and well explained by the local vortices. Second, deformations upstream of the cap are mainly driven by the Kelvin–Helmholtz (KH) instability, unaffected by the vortices in the behind-the-cap region (BCR), and are important in the eventual atomization process. Different atomization mechanisms are identified and are delineated on a gas Weber number ($We_{g}$) versus liquid Reynolds number ($Re_{l}$) map based on the relative gas–liquid velocity. In a frame moving with the liquid velocity, this result is consistent with prior temporal studies. A simpler and clearer portrait of similarity of the atomization domains is shown by using the relative gas–liquid axial velocity, i.e. $We_{r}$ and $Re_{r}$, and avoiding the widely used velocity ratio as a third key parameter. A detailed comparison of vorticity along the axis in an Eulerian frame versus a frame fixed to a surface wave reveals that the vortex development and surface deformations are periodic in the upstream region, but this periodicity is lost closer to the BCR. In the practical range of the density ratio and for early times in the process, axial vorticity is mainly generated by baroclinicity while streamwise vortex stretching becomes more important at later times and only at lower relative velocities when pressure gradients are reduced. The inertia, vortex, pressure, viscous and surface tension forces are analysed to delineate the dominant causes of the three-dimensional instability of the axisymmetric KH structure due to surface acceleration in the axial, radial and azimuthal directions. The inertia force related to the axial gradient of kinetic energy is the main cause of the axial acceleration of the waves, while the azimuthal acceleration is mainly caused by the pressure and viscous forces. The viscous forces are negligible in the radial direction and away from the nozzle exit in the axial direction. It is interesting to note that azimuthal viscous forces are important even at high $Re_{l}$, indicating that inertia is not totally dominant in this instability occurring early in the atomization cascade.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3