Trailing-edge flow manipulation using streamwise finlets

Author:

Afshari AbbasORCID,Azarpeyvand Mahdi,Dehghan Ali A.,Szőke Máté,Maryami Reza

Abstract

The use of streamwise finlets as a passive flow and aerodynamic noise-control technique is considered in this paper. A comprehensive experimental investigation is undertaken using a long flat plate, and results are presented for the boundary layer and surface pressure measurements for a variety of surface treatments. The pressure–velocity coherence results are also presented to gain a better understanding of the effects of the finlets on the boundary layer structures. The results show that the flow behaviour downstream of the finlets is strongly dependent on the finlet spacing. The use of finlets with coarse spacing leads to a reduction in pressure spectrum at mid- to high frequencies and an increase in spanwise length scale in the trailing-edge region due to flow channelling effects. For the finely distributed finlets, the flow is observed to behave similarly to that of a permeable backward-facing step, with significant suppression of the high-frequency pressure fluctuations but an elevation at low frequencies. Furthermore, the convection velocity is observed to reduce downstream of all finlet treatments. The trailing-edge surface pressure spectrum results have shown that, in order to obtain maximum unsteady pressure reduction, the finlet spacing should be of the order of the thickness of the inner layer of the boundary layer. A thorough study is provided for understanding of the underlying physics of both categories of finlets and their implications for controlling the flow and noise generation mechanism near the trailing edge.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3