Extension of classical stability theory to viscous planar wall-bounded shear flows

Author:

Lee HarryORCID,Wang ShixiaoORCID

Abstract

A viscous extension of Arnold’s inviscid theory for planar parallel non-inflectional shear flows is developed and a viscous Arnold’s identity is obtained. Special forms of the viscous Arnold’s identity have been revealed that are closely related to the perturbation’s enstrophy identity derived by Synge (Proceedings of the Fifth International Congress for Applied Mechanics, 1938, pp. 326–332, John Wiley) (see also Fraternale et al., Phys. Rev. E, vol. 97, 2018, 063102). Firstly, an alternative derivation of the perturbation’s enstrophy identity for strictly parallel shear flows is acquired based on the viscous Arnold’s identity. The alternative derivation induces a weight function. Thereby, a novel weighted perturbation’s enstrophy identity is established, which extends the previously known enstrophy identity to include general streamwise translation-invariant shear flows. Finally, the validity of the enstrophy identity for parallel shear flows is rigorously examined and established under global nonlinear dynamics imposed with two classes of wall boundary conditions. As an application of the enstrophy identity, we quantitatively investigate the mechanism of linear instability/stability within the normal modal framework. The investigation reveals a subtle interaction between a critical layer and its adjacent boundary layer, which determines the stability nature of the disturbance. As an implementation of the relaxed wall boundary conditions imposed for the enstrophy identity, a control scheme is proposed that transitions the wall settings from the no-slip condition to the free-slip condition, through which a flow is stabilized quickly in an early stage of the transition.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3