Material stability and instability in non-local continuum models for dense granular materials

Author:

Li Shihong,Henann David L.ORCID

Abstract

A class of common and successful continuum models for steady, dense granular flows is based on the$\unicode[STIX]{x1D707}(I)$model for viscoplastic grain-inertial rheology. Recent work has shown that under certain conditions,$\unicode[STIX]{x1D707}(I)$-based models display a linear instability in which short-wavelength perturbations grow at an unbounded rate – i.e. a Hadamard instability. This observation indicates that$\unicode[STIX]{x1D707}(I)$models will predict strain localization arising due to material instability in dense granular materials; however, it also raises concerns regarding the robustness of numerical solutions obtained using these models. Several approaches to regularizing this instability have been suggested in the literature. Among these, it has been shown that the inclusion of higher-order velocity gradients into the constitutive equations can suppress the Hadamard instability, while not precluding the modelling of strain localization into diffuse shear bands. In our recent work (Henann & Kamrin,Proc. Natl Acad. Sci. USA, vol. 110, 2013, pp. 6730–6735), we have proposed a non-local model – called the non-local granular fluidity (NGF) model – which also involves higher-order flow gradients and has been shown to quantitatively describe a wide variety of steady, dense flows. In this work, we show that the NGF model also successfully regularizes the Hadamard instability of the$\unicode[STIX]{x1D707}(I)$model. We further apply the NGF model to the problem of strain localization in quasi-static plane-strain compression using nonlinear finite-element simulations in order to demonstrate that the model is capable of describing diffuse strain localization in a mesh-independent manner. Finally, we consider the linear stability of an alternative gradient–viscoplastic model (Bouzidet al.,Phys. Rev. Lett., vol. 111, 2013, 238301) and show that the inclusion of higher-order gradients does not guarantee the suppression of the Hadamard instability.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3