A kinetic-based hyperbolic two-fluid model for binary hard-sphere mixtures

Author:

Fox Rodney O.ORCID

Abstract

Starting from coupled Boltzmann–Enskog (BE) kinetic equations for a two-particle system consisting of hard spheres, a hyperbolic two-fluid model for binary, hard-sphere mixtures is derived with separate mean velocities and energies for each phase. In addition to spatial transport, the BE kinetic equations account for particle–particle collisions, using an elastic hard-sphere collision model, and the Archimedes (buoyancy) force due to spatial gradients of the pressure in each phase, as well as other forces involving spatial gradients (e.g. lift). In the derivation, the particles in a given phase have identical mass and volume, and have no internal degrees of freedom (i.e. the particles are adiabatic). The ‘hard-sphere-fluid’ phase is obtained in the limit where the particle diameter in one phase tends to zero with fixed phase density so that the number of fluid particles tends to infinity. The moment system resulting from the two BE kinetic equations is closed at second order by invoking the anisotropic Gaussian closure. The resulting two-fluid model for a binary, hard-sphere mixture therefore consists (for each phase $\unicode[STIX]{x1D6FC}=1,2$) of transport equations for the mass $\unicode[STIX]{x1D71A}_{\unicode[STIX]{x1D6FC}}$, mean momentum $\unicode[STIX]{x1D71A}_{\unicode[STIX]{x1D6FC}}\boldsymbol{u}_{\unicode[STIX]{x1D6FC}}$ (where $\boldsymbol{u}_{\unicode[STIX]{x1D6FC}}$ is the velocity) and a symmetric, second-order, kinetic energy tensor $\unicode[STIX]{x1D71A}_{\unicode[STIX]{x1D6FC}}\unicode[STIX]{x1D640}_{\unicode[STIX]{x1D6FC}}=\frac{1}{2}\unicode[STIX]{x1D71A}_{\unicode[STIX]{x1D6FC}}(\boldsymbol{u}_{\unicode[STIX]{x1D6FC}}\otimes \boldsymbol{u}_{\unicode[STIX]{x1D6FC}}+\unicode[STIX]{x1D748}_{\unicode[STIX]{x1D6FC}})$. The trace of the fluctuating energy tensor $\unicode[STIX]{x1D748}_{\unicode[STIX]{x1D6FC}}$ is $\text{tr}(\unicode[STIX]{x1D748}_{\unicode[STIX]{x1D6FC}})=3\unicode[STIX]{x1D6E9}_{\unicode[STIX]{x1D6FC}}$ where $\unicode[STIX]{x1D6E9}_{\unicode[STIX]{x1D6FC}}$ is the phase temperature (or granular temperature). Thus, $\unicode[STIX]{x1D71A}_{\unicode[STIX]{x1D6FC}}E_{\unicode[STIX]{x1D6FC}}=\unicode[STIX]{x1D71A}_{\unicode[STIX]{x1D6FC}}\text{tr}(\unicode[STIX]{x1D640}_{\unicode[STIX]{x1D6FC}})$ is the total kinetic energy, the sum over $\unicode[STIX]{x1D6FC}$ of which is the total kinetic energy of the system, a conserved quantity. From the analysis, it is found that the BE finite-size correction leads to exact phase pressure (or stress) tensors that depend on the mean-slip velocity $\boldsymbol{u}_{12}=\boldsymbol{u}_{1}-\boldsymbol{u}_{2}$, as well as the phase temperatures for both phases. These pressure tensors also appear in the momentum-exchange terms in the mean momentum equations that produce the Archimedes force, as well as drag contributions due to fluid compressibility and a lift force due to mean fluid-velocity gradients. The closed BE energy flux tensors show a similar dependence on the mean-slip velocity. The characteristic polynomial of the flux matrix from the one-dimensional model is computed symbolically and depends on five parameters: the particle volume fractions $\unicode[STIX]{x1D711}_{1}$, $\unicode[STIX]{x1D711}_{2}$, the phase density ratio ${\mathcal{Z}}=\unicode[STIX]{x1D70C}_{f}/\unicode[STIX]{x1D70C}_{p}$, the phase temperature ratio $\unicode[STIX]{x1D6E9}_{r}=\unicode[STIX]{x1D6E9}_{2}/\unicode[STIX]{x1D6E9}_{1}$ and the mean-slip Mach number $Ma_{s}=\boldsymbol{u}_{12}/\sqrt{5\unicode[STIX]{x1D6E9}_{1}/3}$. By applying Sturm’s Theorem to the characteristic polynomial, it is demonstrated that the model is hyperbolic over a wide range of these parameters, in particular, for the physically most relevant values.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference95 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in well-posed Eulerian models for polydisperse multiphase flows;International Journal of Multiphase Flow;2024-02

2. Gas–Particle Dynamics in High-Speed Flows;Annual Review of Fluid Mechanics;2024-01-19

3. A kinetic-based model for polydisperse, high-speed, fluid–particle flows;International Journal of Multiphase Flow;2024-01

4. Shock–particle-curtain-interaction study with a hyperbolic two-fluid model: Effect of particle force models;International Journal of Multiphase Flow;2023-12

5. Turbulence Models for Compressible Disperse Multiphase Flows;Proceedings of the IUTAM Symposium on Turbulent Structure and Particles-Turbulence Interaction;2023-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3