Finite-amplitude steady-state wave groups with multiple near-resonances in finite water depth

Author:

Liu Z.ORCID,Xie D.

Abstract

Finite-amplitude wave groups with multiple near-resonances are investigated to extend the existing results due to Liu et al. (J. Fluid Mech., vol. 835, 2018, pp. 624–653) from steady-state wave groups in deep water to steady-state wave groups in finite water depth. The slow convergence rate of the series solution in the homotopy analysis method and extra unpredictable high-frequency components in finite water depth make it hard to obtain finite-amplitude wave groups accurately. To overcome these difficulties, a solution procedure that combines the homotopy analysis method-based analytical approach and Galerkin method-based numerical approaches has been used. For weakly nonlinear wave groups, the continuum of steady-state resonance from deep water to finite water depth is established. As nonlinearity increases, the frequency bands broaden and more steady-state wave groups are obtained. Finite-amplitude wave groups with steepness no less than $0.20$ are obtained and the resonant sets configuration of steady-state wave groups are analysed in different water depths. For waves in deep water, the majority of non-trivial components appear around the primary ones due to four-wave, six-wave, eight-wave or even ten-wave resonant interactions. The dominant role of four-wave resonant interactions for steady-state wave groups in deep water is demonstrated. For waves in finite water depth, additional non-trivial high-frequency components appear in the spectra due to three-wave, four-wave, five-wave or even six-wave resonant interactions with the components around the primary ones. The amplitude of these high-frequency components increases further as the water depth decreases. Resonances composed by components only around the primary ones are suppressed while resonances composed by components around the primary ones and from the high-frequency domain are enhanced. The spectrum of steady-state resonant wave groups changes with the water depth and the significant role of three-wave resonant interactions in finite water depth is demonstrated.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3